Synthesis, structure and spectral properties of [(HgPh$)_{2}$ TbSMe]; a dinuclear 2-S-methylthiobarbiturate of phenylmercury (iil) exhibiting linkage isomerism

R. Carballo ${ }^{\text {a }}$, J.S. Casas ${ }^{\text {b.* }}$, M.S. García-Tasende ${ }^{\text {b.* }}$, A. Sánchez ${ }^{\text {b }}$, J. Sordo ${ }^{\text {b }}$, E.M. Vázquez-López ${ }^{\text {a }}$
${ }^{a}$ Departamento de Química pura e Aplicada, Universidade de Vigo, 36200 Vigo. Spain
${ }^{\text {b }}$ Departamento de Quimica Inorgánica. Universidade de Santiago de Compostela, 15706 Santiage de Compostela, Spain

Received 29 January 1996

Abstract

The reaction of $2-S$-methylthiobarbituric acid ($\mathrm{H}_{2} \mathrm{TbSMe}$) with phenylmercury(II) acetate in ethanol afforded the title complex, which crystallizes in the space group $P 2_{1} / c$ (No. 14). The asymmetric unit consists of two independent $\left[(\mathrm{HgPh})_{2} \mathrm{TbSMe}\right]$ molecules: in molecule 1 , the two organometallic moieties are bound primarily to the nitrogen atoms of the ligand ring ($\mathrm{N}(1)$ and $\mathrm{N}(3)$); in molecule 2 , one phenylmercury(II) is $\mathrm{N}(1)$-bound but the other is bounc to the exocyclic oxygen contiguous to $\mathrm{N}(3)$. Hence molecules 1 and 2 are linkage isomers. Several weak intra- and intermolecular interactions are also observed. In DMSO solution, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{199} \mathrm{Hg} ~ \mathrm{NMR}$ measurements suggest fast exchange of phenylmercury(II) between N - and O -coordination, with prevalence of the former.

Keynords: Mereny; X-ray stucture; Phenylmercury(II) complexes: Linkage isomerism

1. Introduction

Several dinuclear mono-organomereury(II) compounds have been isolated and structurally characterized by X-ray diffraction [1]. Many of them derived from dimetallation reactions of nucleobases or amino acids with methylmercury(II). Surprisingly, reports of similar compounds with phenylmercury(11) are scarce [1] (only one example appears to have been described prior to 1992 [2]). However, in the course of a comprehensive study of the influence of deprotonation and metallation with organometallic cations on the keto-enolic tautomerism of heterocyclic compounds [3-7] we have prepared several dinuclear complexes of phenylmercury(II) [3], and we recently reported the crystal structure of an interesting complex of PyPhHg(II) with the ligand 2-thiouracil [7]. In continuance of this work, we have now prepared a dinuclear complex derived from $\mathrm{PhHg}(\mathrm{II})$ and $2-S$-methylthiobarbituric acid ($\mathrm{H}_{2}{ }^{\mathrm{T}} \mathrm{TbSMe}$;

[^0]Scheme 1). This article ibee the synthesis and structure of the new comper .. $\left\lfloor(\mathrm{Hg} \mathrm{Ph})_{2} \mathrm{TbSMe}\right]_{\text {, which }}$ presents some interesting and unusual coordination features.

2. Experimental details

2.1. Synthesis of $/(\mathrm{HgPh})_{2} \mathrm{TbSMe} \mid$

A solution of $1.0 \mathrm{~g}(2.97 \mathrm{mmol})$ of phenylmercury acetate in 110 ml of ethanol was added to a solution of $0.47 \mathrm{~g}(2.97 \mathrm{mmol})$ of $\mathrm{H}_{2} \mathrm{TbSMe}$ in 50 ml of the same solvent. The small amount of pale pink solid produced after several hours gentle heating with stirring was filtered out, and the mother liquor was cotrentrated until a colourless crystalline solid appeared. Elemental analysis of this compound suggested that the bimetallic, not the monometallic complex had been prepared, as was later confirmed by the X-ray study (vide infira). (Anal. Found: C, 28.1; H, 2.1. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Hg}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ S. Calc.: C, 28.7; H, 2.0\%.)

Scheme 1.

2.2. Measurements

$\mathrm{H}_{2} \mathrm{TbSMe}$ and phenylmercury acetate were obtained from commercial sources and used without further purification. Elemental analysis was performed by Galbraith Lab., Knoxville, TN, USA. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{199} \mathrm{Hg}$ NMR spectra in either DMSO- d_{6} or a DMSO-DMSO- d_{6} mixture were recorded at room temperature on a Bruker WM-250 spectrometer at $250.13 \mathrm{MHz}, 62.83 \mathrm{MHz}$ and 44.70 MHz respectively. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR shifts were referred to TMS using the solvent signal and ${ }^{199} \mathrm{Hg}$ shifts to neat HgMe_{2}.

2.3. Crystal data

$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SHg}_{2}, M=711.54$, monoclinic, space group $P 2_{1} / c($ No. 14) $, a=17.830(5), b=10.3811(4)$, $c=20.847(5) \AA, \quad 6=112.505(10)^{\circ}, V=3564.8(12) \AA^{3}$. $Z=8, D_{\varepsilon}=2.652 \mathrm{gcm}^{-3} \cdot \mu(\mathrm{MoK} \alpha)=17.334 \mathrm{~mm}^{-1}$. $F(000)=2576$.

2.4. Data collection, structure analysis and refinement

A colourless prismatic erystal of approximate dimen. sions $0.30 \times 0.20 \times 0.10 \mathrm{~mm}^{1}$ was selected and anal= ysed at 203 K with an Enraf Nonius CAD4 diffractometer using graphite-monochromated MoK α radiation. Cell parameters were obtained from the setting angles of 25 reflections (θ range $7-13^{\circ}$). 9381 reflections were collected in the θ range $3-30^{\circ}(-1 \leq h \leq 23$, $0 \leq k \leq 13,-27 \leq 1 \leq 25)$ by the $\omega / 2 \theta$ scan tech-
nique. Of 8574 independent reflections ($R_{\text {int }}=0.0353$), after Ψ-scan absorption correction (max./min. factor corrections $0.999 / 0.711) 5643$ with $I>2 \sigma(I)$ were considered as observed.

The structure was solved by direct methods. All non-H atoms were anisotropically refined. The H atoms bound to $\mathrm{C}(5)$ and $\mathrm{C}(51)(\mathrm{H}(5)$ and $\mathrm{H}(51)$) were refined at positions obtained from difference Fourier techniques with a common temperature factor ($U_{\text {eq }}=0.048 \AA^{2}$). All other hydrogen atoms were included in the model in geometrically calculated positions [8]. Full-matrix least squares refinement on F^{2} of 8571 reflections led to the final indices $R_{1}=0.0537$ (for observed reflections), $R_{\mathrm{w}}=0.0877$ and $\mathrm{GoF}=1.141$ for all reflections.

Most calculations were performed with SHELXS86 [8] and SHELXL93 [9]. Figures were plotted with ORTEP [10] and SCHAKAL [11]. Scattering factors and anomalous dispersion corrections were taken from Ref. [12].

3. Results and discussion

3.1. Crystal structure

A view of the structure is shown in Fig. I. Atomic positions, interatomic distances and angles are listed in Tables 1-3.

The asymmetric unit consists of two independent $[(\mathrm{HgPh})$, TbSMe] molecules which are linkage isomers (Fig. 1): in molecule I, the two HgPh^{+}moieties are coordinated to $\mathrm{N}(1)$ and $\mathrm{N}(3)(\mathrm{Hg}(1)-\mathrm{N}(1)=2.117(10)$, $\mathrm{Hg}(2)=\mathrm{N}(3)=2.105(10) \AA$) while in molecule 2 the organometallic cations are bound to $N(11)$ and $O(41)$ $(\mathrm{Hg}(3)-\mathrm{N}(11)=2.091(11) . \mathrm{Hg}(4)-\mathrm{O}(41)=$ $2.088(10) \AA)$. The $\mathrm{Hg}(4)-\mathrm{O}(41)$ bond, which is rather uncommon in mono-organomercury(II) compounds other than carboxylates, is very short, so moiecules I

Fig. 1. ORTEP plot showing the structure of $\left[(\mathrm{HgPh})_{2}\right.$ TbSMe] with the atom-numbering scheme used. The thermal ellipsoids correspond to 30% probability.
and 2 are true linkage isomers, not the more common distortion isomers [1,13]. The average $\mathrm{Hg}-\mathrm{C}$ distance ($2.04 \AA$) is a little shorter than, but not significantly different from, the mean reported for phenylmercury(II) compounds, $2.06 \AA$ [1]. The primary bonds of each Hg cation ($\mathrm{Hg}-\mathrm{C}$ and $\mathrm{Hg}-\mathrm{N}$ or $\mathrm{Hg}-\mathrm{O}$) are roughly collinear, as usual for mercury atoms; the largest deviations affect the $\mathrm{Hg}(4)$ and $\mathrm{Hg}(1)(\mathrm{C}(141)-\mathrm{Hg}(4)-\mathrm{O}(41)$ $\left.=171.4(5)^{\circ}, \mathrm{C}(11)-\mathrm{Hg}(1)-\mathrm{N}(1)=172.9(6)^{\circ}\right)$.

Also, as usual, there are several short intra- and intermolecular interactions which may be imposed or facilitated by the stereochemistry of the ligand and/or the molecular packing in the lattice. The four mercury atoms differ as regards these weak interactions. $\mathrm{Hg}(1)$ has only an intramolecular secondary bond with $O(6)$ $(\mathrm{Hg}(1)-\mathrm{O}(6)=2.627(10) \AA$; sum of the van der Waals radii, $3.23 \AA[14,15]) . \mathrm{Hg}(2)$ has two intramolecular interactions, with $O(4)(2.833(10) \AA)$ and $S(1)$

Table I
Atomic coordinates ($\times 10^{6}$) and equivalent isotropic displacement ($\AA^{2} \times 10^{3}$) parameters for [$\left.(\mathrm{HgPh})_{2} \mathrm{TbSMe}\right]$

	x	y	:	$U_{\text {eq }}$
Hg(1)	1930(1)	922(1)	1482(1)	39(1)
$\mathrm{Hg}(2)$	-1562(1)	-1513(1)	548(1)	$31(1)$
S(1)	368(2)	-1586(4)	1547(2)	34(1)
$\mathrm{N}(1)$	657(6)	682(10)	992(5)	24(2)
N(3)	-645(6)	-178(11)	617(6)	27(3)
O(4)	- 1721(6)	779(10)	- 232(5)	35(2)
O(6)	935(6)	2511(9)	569(5)	$36(2)$
C(1)	$1388(9)$	-1424(18)	2137(10)	58(5)
C(2)	137(8)	-216(13)	1020(6)	22(3)
C(4)	-973(8)	855(14)	135(7)	27(3)
C(5)	-432(9)	1805(14)	131(7)	29(3)
C(6)	378(8)	1727(12)	550(6)	24(3)
C(II)	3131(9)	1130(19)	2065(8)	49(5)
C(12)	3562(11)	2226 (20)	2111(11)	$64(6)$
C(13)	4370(12)	2345(24)	2558(11)	$71(6)$
C(14)	4759(10)	1313(30)	2946(10)	82(8)
C(15)	4343(12)	189(27)	2923(11)	$79(7)$
C(16)	3542(10)	105(20)	2494(10)	62(6)
C(2)	- $24778(8)$	-2812(13)	$417(8)$	$30(3)$
C(22)	-2802(11)	-3447(19)	-203(10)	64(5)
C(23)	--3426(14)	$-4308(23)$	- $315(15)$	$92(8)$
C(24)	- $3683(13)$	-4580(22)	188(21)	112(12)
C(25)	-3349(13)	- $3052(24)$	$811(15)$	\%ock)
C(26)	- 2743(11)	- $3107(21)$	$912(11)$	$65(6)$
$\mathrm{Hg}(3)$	-2520(1)	1738(1)	583(1)	$34(1)$
$\mathrm{Hg}(4)$	1496(1)	3673(1)	2265(1)	$33(1)$
S(11)	- $1330 \times 2)$	$4318(4)$	$805(2)$	41(1)
O(41)	$981(6)$	2106(9)	$2575(5)$	34(2)
O(61)	-1560×6	45(9)	1662(5)	$31(2)$
N(II)	- $1368(7)$	2060(11)	1335(6)	27(3)
N(31)	-104(7)	3080 (11)	1778(6)	27(3)
C(20)	-883(8)	306)(12)	1379 (7)	$28(3)$
C(41)	214(9)	2072(13)	2220(6)	26(3)
C(51)	- 264(99)	1047(13)	2240イ7)	29(3)
C(61)	- 1075(9)	980(13)	1762(7)	32(3)
C(111)	-459(10)	5182(15)	$779(8)$	$40(4)$
C(31)	-3675(9)	1316(16)	-103(9)	45(4)
C(32)	- $3775(11)$	525(21)	-651(9)	62(6)
C(33)	-4544(15)	204(22)	-1106(12)	77(7)
C(34)	-5214(14)	650)(32)	-994(14)	101(11)
C(35)	-5105(13)	1456(26)	-452(16)	$92(9)$
C(36)	-4353(10)	1826(20)	2(12)	$68(6)$
C(141)	2150(9)	5033(15)	$2001(7)$	34(3)
C(146)	1973(9)	5412(17)	1313(8)	43(4)
C(142)	2789(8)	$5608(16)$	2515(9)	43(4)
C(143)	3253(10)	6524(18)	2364(10)	537(5)
C(145)	2394(11)	6357(20)	1164(9)	57(5)
C(144)	3957(11)	6916(18)	1685(10)	55(5)

Table 2
Selected interatomic distances (\AA) in $\left[(\mathrm{HgPh})_{2} \mathrm{TbSMe}\right]$

Molecule 1		Molecule 2	
$\mathrm{Hg}(1)-\mathrm{C}(11)$	$2.029(14)$	$\mathrm{Hg}(3)-\mathrm{C}(31)$	2.043(14)
$\mathrm{Hg}(1)-\mathrm{N}(1)$	$2.117(10)$	$\mathrm{Hg}(3)-\mathrm{N}(11)$	$2.091(1)^{\text {(}}$
$\mathrm{Hg}(2)-\mathrm{C}(21)$	$2.054(3)$	$\mathrm{Hg}(4)-\mathrm{C}(141)$	2.04 (2)
$\mathrm{Hg}(2)-\mathrm{N}(3)$	$2.105(10)$	$\mathrm{Hg}(4)-\mathrm{O}(41)$	$2.088(10)$
S(1)-C(1)	1.77 (2)	S(11)-C(20)	1.728(14)
S(1)-C(2)	1.746(13)	S(11)-C(111)	1.81(2)
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.33(2)$	O(41)-C(41)	$1.28(2)$
$\mathrm{N}(1)-\mathrm{C}(6)$	$1.39(2)$	$\mathrm{O}(61)-\mathrm{C}(61)$	$1.26(2)$
$N(3)-C(2)$	1.32(2)	$\mathrm{N}(11)-\mathrm{C}(20)$	1.43(2)
N(3)-C(4)	$1.43(2)$	$\mathrm{N}(11)-\mathrm{C}(61)$	1.40(2)
$\mathrm{O}(4)=\mathrm{C}(4)$	1.26(2)	$\mathrm{N}(31)-\mathrm{C}(20)$	1.32(2)
$O(6)=C(6)$	1.27(2)	$\mathrm{N}(31)-\mathrm{C}(41)$	1.37(2)
C(4) $-\mathrm{C}(5)$	$1.38(2)$	$\mathrm{C}(41)-\mathrm{C}(51)$	1.37(2)
$\mathrm{C}(5)=\mathrm{C}(6)$	1.38(2)	C(51)-C(61)	1.41(2)
Intramolecular interactions		Intermolecular interactions	
$\mathrm{Hg}(1)-\mathrm{O}(6)$	$2.627(10)$	$\mathrm{Hg}(1) \cdots \mathrm{Hg}(4)$	$3.5190(9)$
$\mathrm{Hg}(2)-\mathrm{O}(4)$	$2.833(10)$	$\mathrm{Hg}(3) \cdots \mathrm{O}(4)$	$2.797(10)$
$\mathrm{Hg}(2)-\mathrm{S}(1)$	$3.270(4)$	$\mathrm{Hg}(2) \cdots \mathrm{O}(61)$	2.829 (10)
$\mathrm{Hg}(3)-\mathrm{O}(61)$	$2.85(6)$	$\mathrm{Hg}(4) \cdots \mathrm{O}\left(61^{\prime}\right)$	$2.617(9)$
$\mathrm{Hg}(4)-\mathrm{N}(31)$	$2.707(11)$		

$1=-x . y+0.5 .-z+0.5$.
(3.270(4) \AA : sum of the van der Waals radii $3.53 \AA$ [15]), and an intermolecular interactions with $O(61)$ $(2,829(10) \AA$) in molecule $2 . \mathrm{Hg}(3)$ has the same secondary bonds as $\mathrm{Hg}(2)$ except for $\mathrm{Hg} \cdots \mathrm{S}$; the angle $S(11)=C(20)=N(11)\left(115.4(10)^{\circ}\right)$ is wider than $N(3)=$ $\mathbf{C}(2)=\mathbf{S}(1)\left(111.2(9)^{9}\right)($ which shows there is some flexibility in the exocyelic part of the ligand skeleton), and the $\mathrm{Hg}(3)=\mathrm{S}(11)$ distance is consequently greater than the sum of the vill der Waals radii. This lack of interaction with a thioether sulphur was previously found in similar systems [3], $\mathrm{Hg}(4)$ has an intramolecular secondary $\mathrm{Hg} \cdots \mathrm{N}$ bond $\left(\mathrm{Hg}_{\mathrm{g}}(4) \cdots \mathrm{N}(31)=\right.$ 2.707(11) \AA) and also an intermolecular $\mathrm{Hg} \cdots \mathrm{O}$ interattion with a neighbouring type 2 molecule (Fig. 2. $\mathrm{Hg}(4) \cdots \mathrm{O}\left(61^{\prime}\right)=2.617(9) \AA^{\prime}=-x, y+0.5,-z+$ 0.5). Overall. molecules 1 and 2 are connected in pairs by the $\mathrm{Hg}(2) \cdots \mathrm{O}(61)$ and $\mathrm{Hg}(3) \cdots \mathrm{O}(4)$ interactions with their pyrimidine rings (dihedral angle 6.19°) practi-
cally eclipsing each other (Fig. 3), while the $\mathrm{Hg}(4) \cdots \mathrm{O}\left(61^{\prime}\right)$ interactions assemble the pairs in a helicoidal arrangement along the b axis. $O(61)$ is a triple-bridging atom connecting $\mathrm{Hg}(2)$. $\mathrm{Hg}(3)$ and $\mathrm{Hg}\left(4^{\prime \prime}\right)\left({ }^{\prime \prime}=-x, y \times 0.5,-\approx+0.5\right)$.

The TbSMe ligands are almost planar in both molecules, with the main deviations from the best plane al $\mathrm{C}(1), \mathrm{O}(4)$ and $\mathrm{S}(1)(0.25(2),=0.05(2)$ and $0.01(2) \AA)$ in molecule 1 and $\mathrm{C}(111)$. O(61) and S(11) (0.02(2), $=0.175(9)$ and $0.444(8) \AA$) in molecule 2. In molecule I the mercury atoms deviate 0.131 ($\mathrm{Hg}(1))$ and $0.030 \AA$ $(\mathrm{Hg}(2))$ from the ligand plane, which forms dihedral angles of 12° and 65° respectively with the phenyl planes (C(11), C(12), C(13), C(14), C(15), C(16)) and (C(21), C(22), C(23), C(24), C(25), C(26)). In molecule 2. $\mathrm{Hg}(3)$ and $\mathrm{Hg}(4)$ respectively deviate $0.157 \AA$ and $0.163 \AA$ from the ligand plane, while the dilhedral angles between the phenyl rings and this plane are $80^{\circ}(\mathrm{C}(31)$.

Fig. 2. SCHAKAL plot showing the intermolecular $\mathrm{Hg} \cdots \mathrm{O}$ interactions between type 2 molecules.

Table 3
Selected interatomic bond angles (deg) in [(HgPh$)_{2}$ TbSMe]

Molecule 1		Molecule 2	
$\mathrm{C}(11)-\mathrm{Hg}(1)-\mathrm{N}(1)$	172.9(6)	$\mathrm{C}(31)-\mathrm{Hg}(3)-\mathrm{N}(11)$	175.6(5)
$\mathrm{C}(11)-\mathrm{Hg}(1)-\mathrm{O}(6)$	129.2(6)	$\mathrm{C}(31)-\mathrm{Hg}(3)-\mathrm{O}(4)$	96.2(6)
$\mathrm{N}(1)-\mathrm{Hg}(1)-\mathrm{O}(6)$	54.7(3)	$\mathrm{N}(11)-\mathrm{Hg}(3)-\mathrm{O}(4)$	85.5(4)
$\mathrm{C}(11)-\mathrm{Hg}(1)-\mathrm{Hg}(4)$	90.3(5)	$\mathrm{C}(31)-\mathrm{Hg}(3)-\mathrm{O}(61)$	124.1(5)
$\mathrm{N}(1)-\mathrm{Hg}(1)-\mathrm{Hg}(4)$	86.2(3)	$\mathrm{N}(11)-\mathrm{Hg}(3)-\mathrm{O}(61)$	51.8(4)
$\mathrm{O}(6)-\mathrm{Hg}(1)-\mathrm{Hg}(4)$	67.6(2)	$\mathrm{O}(4)-\mathrm{Hg}(3)-\mathrm{O}(61)$	87.9(3)
$\mathrm{C}(21)-\mathrm{Hg}(2)-\mathrm{N}(3)$	176.6(5)	$\mathrm{C}(141)-\mathrm{Hg}(4)-\mathrm{O}(41)$	171.4(5)
$\mathbf{C (2 1) - H g (2) - O (6 1) ~}$	103.6(4)	$\mathrm{C}(141)-\mathrm{Hg}(4)-\mathrm{O}\left(61^{\prime}\right)$	90.7(5)
$\mathrm{N}(3)-\mathrm{Hg}(2)-\mathrm{O}(61)$	79.1(4)	$\mathrm{O}(41)-\mathrm{Hg}(4)-\mathrm{O}\left(61^{\prime}\right)$	92.3(3)
$\mathrm{C}(21)-\mathrm{Hg}(2)-\mathrm{O}(4)$	125.1(5)	$\mathrm{C}(141)-\mathrm{Hg}(4)-\mathrm{N}(31)$	133.2(5)
$\mathrm{N}(3)-\mathrm{Hg}(2)-\mathrm{O}(4)$	52.5(4)	$\mathrm{O}(41)-\mathrm{Hg}(4)-\mathrm{N}(31)$	54.2(3)
$\mathrm{O}(61)-\mathrm{Hg}(2)-\mathrm{O}(4)$	87.7(3)	$\mathrm{O}\left(61^{\prime}\right)-\mathrm{Hg}(4)-\mathrm{N}(31)$	97.9(3)
$\mathrm{S}(1)-\mathrm{Hg}(2)-\mathrm{N}(3)$	51.1(3)	$\mathrm{C}(141)-\mathrm{Hg}(4)-\mathrm{Hg}(1)$	100.8(4)
$\mathrm{S}(1)-\mathrm{Hg}(2)-\mathrm{O}(4)$	103.6(2)	$\mathrm{O}(41)-\mathrm{Hg}(4)-\mathrm{Hg}(1)$	73.3(3)
$\mathrm{S}(1)-\mathrm{Hg}(2)-\mathrm{C}(21)$	131.1(4)	$\mathrm{O}\left(61^{\prime}\right)-\mathrm{Hg}(4)-\mathrm{Hg}(1)$	153.2(2)
$\mathrm{S}(1)-\mathrm{Hg}(2)-\mathrm{O}(61)$	79.7(2)	$\mathrm{N}(31)-\mathrm{Hg}(4)-\mathrm{Hg}(1)$	91.8(2)
C(2)-S(1)-C(1)	107.0(7)	C(20)-S(11)-C(111)	102.4(7)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	120.0(11)	$\mathrm{C}(41)-\mathrm{O}(41)-\mathrm{Hg}(4)$	110.0(8)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Hg}(1)$	134.1(9)	$\mathrm{C}(61)-\mathrm{O}(61)-\mathrm{Hg}(2)$	111.1(8)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Hg}(1)$	105.9(8)	$\mathrm{Hg}\left(4^{\prime \prime}\right)-\mathrm{O}(61)-\mathrm{Hg}(2)$	112.1(3)
$\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{Hg}(1)$	85.6 (8)	$\mathrm{C}(61)-\mathrm{O}(61)-\mathrm{Hg}(3)$	80.018)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	121.1(11)	$\mathrm{Hg}\left(4^{\prime \prime}\right)-\mathrm{O}(61)-\mathrm{Hg}(3)$	145.4(4)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{Hg}(2)$	128.6 (9)	$\mathrm{Hg}(2)-\mathrm{O}(61)-\mathrm{Hg}(3)$	84.0(3)
$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{Hg}(2)$	110.3(8)	$\mathrm{C}(20) \cdots \mathrm{N}(11)-\mathrm{Hg}(3)$	126.7(9)
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{Hg}(3)$	106.3(8)	$\mathrm{C}(61)-\mathrm{N}(11)-\mathrm{Hg}(3)$	111.7(9)
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{Hg}(2)$	81.6(8)	C(20)-N(31)-C(41)	118.9(12)
$\mathrm{Hg}(3)-\mathrm{O}(4)-\mathrm{Hg}(2)$	85.0(3)	$\mathrm{C}(20)-\mathrm{N}(31)-\mathrm{Hg}(4)$	160.3(9)
$N(3)-C(2)-N(1)$	$122.1(12)$	$\mathrm{C}(41)-\mathrm{N}(31)-\mathrm{Hg}(4)$	79.3(8)
$\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{S}(1)$	$111.2(9)$	N(31)-C(20)-N(11)	122.9(12)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{S}(1)$	126.7(10)	$N(31)-C(20)-S(11)$	$121.6(10)$
$O(4)-C(4)-C(5)$	$128.3(14)$	$\mathrm{N}(11)-\mathrm{C}(20)-\mathrm{S}(11)$	115.4(10)
$O(4)-C(4)-N(3)$	$115.6(12)$	$\mathrm{O}(41)-\mathrm{C}(41)-\mathrm{N}(3)$	116.2(12)
C(5) C(4) N(3)	$116.1(12)$	$O(41) C(41) C(51)$	122.7(12)
C(6) C(5) C(4)	$121.4(13)$	$\mathrm{N}(31)-\mathrm{C}(41)-\mathrm{C}(51)$	$120.9(12)$
O(6) C(6) C(5)	126.9(12)	$C(41)-C(51)-C(61)$	$119.8(12)$
O(6)-C(6)-N(1)	113.8(11)	O(6) $\mathrm{C}(61)-\mathrm{N}(11)$	116.4(13)
C(5) C(6) $\mathrm{N}(1)$	$119.2(12)$	$\mathrm{O}(61) \mathrm{C}(61)-\mathrm{C}(51)$	127.4(13)
		$N(11)=C(61)=C(51)$	116.2(12)

[^1]

Fig. 3. SCHAKAL plot showing the relative positions of molecules 1 and 2 : fine line, molecule 1 : double line, molecule 2.

a Values of J in $\mathrm{Hz} ; \mathrm{b}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{tt}=$ triplet of triplets.

- Value of $W \frac{1}{2}$ in parentheses.
$\mathrm{C}(32), \mathrm{C}(33), \mathrm{C}(34), \mathrm{C}(35), \mathrm{C}(36))$ and 38° ($\mathrm{C}(141)$, C(142), C(143), C(144), C(145), C(146)). This orientation of the phenyl rings must be a compromise between packing efficiency and the maximization of the intermolecular $\mathrm{Hg}(4) \cdots \mathrm{O}\left(61^{\prime}\right)$ interactions.

The large standard deviations of the bond lengths of the TbSMe moiety hinder analysis of the influence of coordination mode on the charge distribution in the ligand. It is, nevertheless, clear: that the bond lengths in the intra-annular $\mathrm{N}=\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ substructures $(N(1)-C(2)-N(3), \quad N(11)=C(20)-N(31), \quad C(4)-C(5)-$ $C(6)$ and $C(41)=C(51)=C(61))$ are those characteristic of the pyrimidine ring (unweighted mean distances (d) $1.333 \AA$ and $1,387 \AA$ respectively [16]); that the $\mathrm{N}=\mathrm{C}(\mathrm{O})$ boids $\quad(N(1)=C(6), \quad N(3)-C(4), \quad N(11)-C(61)$ and $\mathrm{N}(31)=\mathbf{C}(41))$ are longer than in the $\mathbf{C}=\mathbf{N}=\mathbf{C}$ substructures of the pyrimidine ($1.339 \AA[16]$); and, that the $\mathrm{C}=\mathrm{O}$ distances are shorter than in phenols $(d=1.362 \AA$ [16]) but longer than in γ-lactams $\left(\mathrm{C}^{*}=\mathrm{NH}=\mathrm{C}=\mathrm{O}\right.$ groups, $\mathrm{C}^{*}=\mathrm{Csp}^{3}$ with only additional C or H bonds; $d=1.235 \AA[16]$). All this means that the TbSMe rings do not attain total charge delocalization, as in pyrimidine, but instead retain some lactam character.

3.2. NMR study

Both $\mathrm{H}_{2} \mathrm{TbSMe}$ and $[(\mathrm{HgPh}), \mathrm{TbSMe}]$ are very poorly soluble in CHCl_{3} but very soluble in DMSO. Their main NMR parameters in the latter solvent ate listed in Table 4.

As has already been reported [4] the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of H_{2} TbSMe suggest that in DMSO solution the distribution of charge in this molecule is mainly determined by the two keto-enol forms (Scheme 2).

Scheme 2.
although minor contributions by other forms cannot be ruled out. These keto-enol forms can undergo both -OH and - NH deprotonation, and both O - and N -coordination. The ${ }^{\prime} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{HgPh})_{2} \mathrm{TbSMe}\right]$ does not feature the NH signal observed in the spectrum of the free ligand, and the signal attributed to $\mathrm{C}(5)-\mathrm{H}$ (Scheme 1) appears at $4.93 \mathrm{ppm}, \mathbf{0 . 2 2} \mathrm{ppm}$ upfield of its position in the spectrum of the free ligand (Table 4). In the ${ }^{1 / 3} \mathrm{C}$ NMR spectrum of the complex, the $\mathrm{C}(5)$ and $C(2)$ signals are practically in the same positions as in the free ligand, and the SCH_{3} signal is only slightly deshielded, showing that the double deprotonation and bimetallation only induces minimal changes in the electronic charge distribution at these carbon atoms. The carbon signals most affected by metallation are, as expected, those of $C(4)$ and $C(6)$, suggesting that coordination to N and/or O atoms must persist in DMSO. The " $J\left({ }^{1:} \mathrm{C}-{ }^{199} \mathrm{Hg}\right)$ values and the ${ }^{13} \mathrm{C}$ chemical shifts for the phenyl ring carbons are mostly consistent with coordination to nitrogen atoms; however, the fact that ${ }^{199} \mathrm{Hg}$ is slightly more shielded than in N -bound phenylmercury complexes with similar ligands [3] may be indicative of some O -metallation [17], in which case HgPh cations would be coordinated to both N and O atoms as in the solid state.

Acknowledgements

EMV-L thanks the Xunta de Galicia. Spain, for a personal grant. Professor J. Strähle from the University of Tubinguen (Germany) is gratefully acknowledged for the X-ray diffraction facilities.

References

[1] C.E. Holloway and M. Melnik, J. Organomet. Chem.. 495 (1995) 1.
[2] A.J. Cinty. M. Fyfe and B.M. Gatehouse, Inorg. Chem., 6 (1978) 1467.
[3] M.S. Garcia-Tasende, M.I. Suárez Gimeno. A. Sánchez. J.S. Casas and J. Sordo, J. Organomet. Chem., 384 (1990) 19.
[4] M.S. García-Tasende, M.I. Suárez Gimeno, A. Sánchez, J.S. Casas and J. Sordo, J. Organomet. Chem., 390 (1990) 293.
[5] M.S. García-Tasende, B.A. Rivero, A. Castiñeiras, A. Sánchez, J.S. Casas, J. Sordo, W. Hiller and J. Strähle, Inorg. Chim. Acta. 181 (1991) 43.
[6] M.S. García-Tasende, A. Sánchez, J.S. Casas and J. Sordo, Inorg. Chim. Acta, 201 (1992) 35.
[7] J.S. Casas, E.E. Castellano, M.S. García-Tasende, A. Sánchez, J. Sordo, E. Vázquez-López and J. Zukerman-Schpector, J. Chem. Soc. Dalton Truns., (1996) 1973.
[8] G.M. Sheldrick, Acta Crystallogr. Sect. A:, 46 (1990) 467.
[9] G.M. Sheldrick, SHELXL93, A Program for the Solution of Crystal Structures from X-ray Diffraction Data, University of Göttingen, Germany, 1993.
[10] C.K. Johnson, ORTEP, Rep. ORNL-3794, 1965 (Oak Ridge National Laboratory, TN, USA).
[11] E. Keller, SCHAKAL, A Program for Ploiting Molecular and Crystal Structures, University of Freiburg, Germany, 1988.
[12] International Tables for X-Ray Crystallography, Vol. C, Kluwer Academic, Dordrecht, 1992.
[13] M. Melník, Coord. Chem. Rev.. 47 (1982) 239.
[14] A.J. Carty and G.B. Deacon, Inorg. Chim. Acta, 45 (1980) L225.
[15] A. Bondi, J. Phys. Chem., 68 (1964) 441.
[16] F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen and R. Taylor, J. Chem. Soc. Perkin Trans. II, (1987) Sl.
[17] R.G. Kidd, Annu. Rep. NMR Spectrosc. A, 10 (1980) 1.

[^0]: - Corresponding authors.

[^1]:

